Что такое подлежащее суждения

Логика. Учебник для средней школы (13 стр.)

Все тела в безвоздушном пространстве падают с одинаковой скоростью.

Общественное бытие определяет сознание людей.

Крах капитализма неизбежен.

Во всех таких суждениях мыслится не только то, что есть или будет, но главным образом то, что необходимо есть, необходимо будет. Все тела в безвоздушном пространстве падают и будут падать всегда с одинаковой скоростью, ибо таков закон природы; капитализм неизбежно потерпит крах, так как таков закон развития общества.

Разумеется, суждения необходимости, как и суждения действительности, тоже относятся к установленным фактам, но характерная особенность суждений необходимости заключается в том, что они отражают общую закономерность явлений, необходимость данных явлений.

Если в суждении возможности отображается то, что может быть, в суждении действительности — то, что уже есть, то в суждении необходимости — не только то, что есть, но и то, что необходимо должно быть.

Итак, мы рассмотрели утвердительные и отрицательные суждения, общие и частные, условные, категорические и другие виды суждений.

Каждое правильное суждение может рассматриваться в разных отношениях. Например, суждение «А.С. Пушкин — автор романа «Евгений Онегин» является суждением действительности, утвердительным, единичным, категорическим. Его формула:

Суждение «Если тело погрузить в жидкость, то оно потеряет в своём весе столько, сколько весит вытесненная им жидкость» есть суждение необходимости, общее, условное. Его формула:

если S есть Р, то S1 есть P1

§ 10. Объём подлежащего и сказуемого в суждении

Мы видели, что в разных суждениях то или иное свойство утверждается (отрицается) или относительно одного предмета, или относительно нескольких предметов, или относительно всех предметов данного класса. Иначе говоря, в подлежащем суждения мы отображаем или один, или несколько, или все предметы какого-то определённого класса предметов.

В том случае, когда подлежащее или сказуемое обозначает не все предметы данного класса, а только какую-то часть их, тогда говорят, что подлежащее или сказуемое взято не во всём объёме, или не распределено.

Например, в суждении «Некоторые самолёты имеют реактивные двигатели» подлежащее не распределено, так как в нём говорится о некоторых самолётах, а не о всех.

Когда же подлежащее обозначает все предметы данного класса, тогда говорят, что подлежащее взято во всём объёме, или распределено.

Например, в суждении «Все самолёты тяжелее воздуха» подлежащее распределено, так как в нём говорится о всех самолётах.

Знание распределённости терминов, входящих в суждение, помогает лучше понять смысл самих суждений. Всегда очень важно установить, обозначает ли термин суждения весь класс предметов или только часть класса.

Анализ распределённости терминов суждения необходим во всех случаях, когда требуется преобразовать форму у того или иного суждения.

Так, в практике мышления часто приходится общее суждение преобразовывать в частное. Например, общее суждение «Все металлы — элементы» можно преобразовать в частное суждение «Некоторые элементы — металлы».

Но суждение «Все металлы — элементы» нельзя преобразовать в суждение «Все элементы — металлы». Почему? Потому что термин «элементы» в суждении «Все металлы — элементы» взят не во всём объёме, т. е. не распределён. Поэтому в преобразованной форме суждения, когда термин «элементы» будет обозначать субъект суждения, этот термин нельзя брать во всём объёме.

Знание распределённости терминов, входящих в суждение, даёт возможность более правильно строить наши рассуждения.

Возьмём таких два суждения:

Все одноклеточные размножаются простым делением.

Все амёбы — одноклеточные.

Из сопоставления этих суждений можно сделать следующий вывод:

Все амёбы размножаются простым делением.

В результате данного рассуждения мы пришли к правильному заключению. Больше того, мы получили новое знание в сравнении с тем, которое содержалось в первых двух суждениях.

Но никакого нового знания мы не получим из следующих двух суждений:

Все амёбы — одноклеточные.

Почему же из первых двух суждений выводится новое (третье) суждение, а из последних суждений такой вывод невозможен?

Потому, что в первом рассуждении дважды встречающийся термин «одноклеточные» распределён по крайней мере в одном суждении.

Из суждения «Все амёбы — одноклеточные» мы узнаём, что амёбы составляют какую-то часть одноклеточных; из суждения «Инфузория — одноклеточная» мы также узнаём, что инфузории составляют какую-то часть одноклеточных. Но из суждений не видно, каковы же эти части, в каком отношении они находятся друг к другу.

А раз так, то термин «одноклеточные» не может так связать термины «все амёбы» и «инфузория», чтобы получилось новое знание.

Из приведённых примеров видно, для чего необходимо знать распределённость терминов в суждении.

Рассмотрим объёмы подлежащего и сказуемого в общеутвердительных, частноутвердительных, общеотрицательных и частноотрицательных суждениях.

1. В общеутвердительных суждениях подлежащее распределено.

Это видно из самой формулы суждения: «Все S суть Р», ибо в ней говорится относительно всех представителей того или другого класса. Например, в суждении «Все автомобили имеют двигатели» подлежащее взято во всём объёме, или распределено; все автомобили имеют двигатели.

Сказуемое в общеутвердительных суждениях может быть нераспределённым, а может быть и распределённым.

а) Сказуемое не распределено в тех общеутвердительных суждениях, в которых объём сказуемого шире объёма подлежащего.

В суждении «Все галогены — химические элементы» сказуемое взято не во всём объёме, ибо в суждении не говорится о всех химических элементах (в том смысле, что все химические элементы суть галогены); другими словами, сказуемое в таком суждении не распределено. Подлежащее в этом суждении представляет собой вид, а сказуемое — род.

Такое отношение между подлежащим и сказуемым суждения можно выразить в виде двух кругов так, как эго представлено на чертеже 7.

б) Сказуемое распределено в тех общеутвердительных суждениях, в которых объём сказуемого равен объёму подлежащего.

В суждении «Все окружности — геометрические места точек, равно удалённых» сказуемое взято во всём объёме, так как все геометрические места точек, равно удалённых, являются окружностями, и, следовательно, в суждении говорится о всех геометрических местах точек, равно удалённых.

Такое отношение между подлежащим и сказуемым суждения может быть выражено в виде двух совпадающих кругов (черт. 8).

2. В частноутвердительных суждениях подлежащее не распределено.

То, что подлежащее в таком суждении не распределено, очевидно из самой формулы данного суждения: «Некоторые S суть Р». В суждении речь идёт не о всех, а о некоторых предметах, не о всём объёме данного класса предметов.

Например, в суждении «Некоторые рассказы были интересны» сразу видно, что интересны были не все рассказы, а только часть их. Следовательно, подлежащее взято не во всём объёме, оно не распределено.

Сказуемое в частноутвердительном суждении может быть нераспределённым, а может быть и распределённым.

а) Сказуемое не распределено в тех частноутвердительных суждениях, в которых объём сказуемого шире объёма подлежащего.

В суждении «Некоторые учёные — авторы учебников» не распределено не только подлежащее, но и сказуемое. В сказуемом мы узнаём не о всех, а только о части учёных. Сказуемое взято не во всём объёме, или не распределено (черт. 9).

б) Сказуемое распределено в тех частноутвердительных суждениях, в которых сказуемое включено в объём подлежащего.

Например, в суждении «Некоторые писатели — драматурги» сказуемое распределено, ибо речь идёт о всех драматургах (черт. 10).

Что такое подлежащее суждения

ПРЕДМЕТ И ЗАДАЧИ НАУКИ ЛОГИКИ

§ 1. Логика мышления и наука логика

В труде и в быту, в учебной и общественной работе, в научном трактате и в школьном сочинении — везде и всегда необходимо правильное, т. е. определённое, непротиворечивое, последовательное, обоснованное, мышление. Без правильного мышления, которое осуществляется с помощью языка, человек не мог бы ни трудиться, ни общаться с другими людьми.

Если кто-либо неясно, путано высказывает свои мысли, противоречит самому себе, о таком человеке говорят: «Его нельзя понять, в его рассуждениях нет логики».

Здесь словом «логика» называют правильность построения мыслей. Правильное построение мыслей изучается наукой логикой.

Таким образом, следует различать: 1) логику мышления (правильность построения мыслей) и 2) науку логику[1].

Кратко науку логику можно определить так:

Логика есть наука о законах и формах правильного построения мыслей.

§ 2. Логические законы и формы

ЛОГИЧЕСКИЕ ЗАКОНЫ. Определённость, непротиворечивость, последовательность и обоснованность являются обязательными качествами правильного мышления. Эти качества имеют значение законов правильного мышления.

Сознательное или несознательное нарушение логических законов ведёт к неправильному выводу. Человек, который нарушает логические законы, неизбежно оказывается побеждённым в споре, дискуссии.

Кто читал роман Тургенева «Рудин», тот помнит горячие споры между двумя героями этого известного произведения. Рассмотрим отрывок из беседы Рудина с Пигасовым:

— Прекрасно! — промолвил Рудин. — Стало быть, по-вашему убеждений нет?

— Нет — и не существует.

— Это ваше убеждение?

— Как же вы говорите, что их нет? Вот вам уже одно, на первый случай.

Все в комнате улыбнулись и переглянулись.

Легко понять, что Пигасов потерпел поражение. Зная логику, можно определить и характер его ошибки. Пигасов противоречит самому себе. Признав в начале беседы, что убеждений не существует, он тут же отказывается от своей первой мысли и утверждает совершенно противоположное.

Один из логических законов, который называется законом противоречия, указывает на недопустимость подобной ошибки в рассуждениях.

Логика имеет своей задачей изучение законов правильного построения мыслей и логических форм.

ЛОГИЧЕСКАЯ ФОРМА — это структура, строение наших мыслей.

Возьмём для примера две такие мысли:

Медь — проводник электричества.

Пшеница — растение семейства злаковых.

Каждая из этих мыслей представляет собой отражение в нашем мышлении определённых фактов действительности. Так как факты эти различны, то и содержание мыслей об этих фактах различное. Но, несмотря на это, в обоих случаях мы видим общее строение, единую структуру этих мыслей.

Наука логика, исследуя логические формы, отвлекается от конкретного содержания той или иной мысли.

Рассматривая приведённые примеры, логика интересуется не свойствами меди (ими занимается физика) и не принадлежностью пшеницы к семейству злаковых (это область ботаники). Логику интересует структура мысли.

Возьмём ещё для примера два таких рассуждения:

Все граждане СССР имеют право на образование.

Мы — граждане СССР.

Следовательно, мы имеем право на образование.

Все звёзды являются раскаленными газовыми шарами.

Следовательно, Сириус — раскалённый газовый шар.

Содержание этих двух рассуждений разное, но ход мыслей в обоих примерах одинаков. В первом случае мы мыслим о нашем праве на образование, закреплённом в Конституции СССР. Во втором случае мы мыслим о структуре Сириуса, которую он имеет, как и всякая звезда.

Однако, являясь разными по содержанию, эти два рассуждения сходны между собой в отношении своего строения. Логическая форма этих рассуждений одинакова: от общего положения мы идём к частному выводу.

Если в процессе рассуждения наши мысли облекаются в неправильные формы, то в таком случае прийти к истинным выводам невозможно.

Сравним два следующих рассуждения:

Во всех городах за полярным кругом бывают белые ночи.

Город Игарка находится за полярным кругом.

Следовательно, в Игарке бывают белые ночи.

Во всех городах за полярным кругом бывают белые ночи.

Ленинград не находится за полярным кругом.

Следовательно, в Ленинграде не бывает белых ночей.

В первом случае вывод и ход рассуждений правильный. Во втором случае, несмотря на правильность исходных положений, заключение получилось ошибочным: известно, что в Ленинграде бывают белые ночи. Неверный вывод есть результат того, что рассуждение облечено в неправильную логическую форму[2].

Таким образом, логика изучает формы мышления. Но это не значит, что логика не интересуется содержанием мышления. Изучение формы мысли вне связи с содержанием не имело бы для нас никакого смысла. Однако изучение её в связи с содержанием не означает, что мы не можем в необходимых случаях в целях изучения мысленно отвлекать эту форму.

Логические законы и формы, т. е. законы и формы правильного построения мыслей, являются общечеловеческими. Это значит, что люди различных эпох и стран независимо от своей классовой и национальной принадлежности строили и строят свои рассуждения по одним и тем же логическим законам, мыслили и мыслят в одних и тех же логических формах. Если бы не было единых и обязательных для всех людей логических законов и форм, то люди не понимали бы друг друга.

Человеческое мышление развивается, изменяется, т. е. становится более совершенным. Но изменение форм мышления в течение длительного времени мало заметно. Логические формы и законы обладают устойчивостью, постоянством.

§ 3. О материалистическом понимании мышления

Начиная с древнейших времён люди интересовались вопросом об отношении мышления к бытию. В зависимости от решения этого вопроса различаются в философии два направления — материалистическое и идеалистическое.

Последовательное, единственно научное разрешение вопроса о материи и сознании, о материи и мышлении, об источнике наших ощущений, представлений, понятий даётся лишь марксистским философским материализмом, разработанным великими учителями трудящегося человечества К. Марксом, Ф. Энгельсом, В. И. Лениным и И. В. Сталиным.

Наименование «логика» происходит от древнегреческого слова «логос», что значит «мышление», «мысль», а также «слово, в котором выражена мысль».

Неправильность этой формы рассуждения будет разъяснена в главе VIII.

Глава IX. Отношение между подлежащим и сказуемым. Объёмы подлежащего и сказуемого

Отношение между подлежащим и сказуемым. Мы видели, что суждения бывают обще-утвердительные, обще-отрицательные, частно-утвердительные и частно-отрицательные. Выясним отношение между подлежащим и сказуемым во всех этих классах суждений.

Суждения A. Возьмём обще-утвердительное суждение «все рыбы суть позвоночные» (все S суть P). В этом суждении мы утверждаем, что всякая рыба входит в объём класса позвоночных, другими словами, что в класс вещей, который мы обозначаем при помощи сказуемого «позвоночные», входит целиком класс вещей, обозначаемых подлежащим. Но так как в классе позвоночных кроме рыб есть ещё и другие животные, то объём класса позвоночных будет больше класса рыб. Если понятие S содержится в объёме понятия P, то символически мы можем это представить при помощи круга S, который находится внутри круга P. Поэтому те обще-утвердительные суждения, в которых объём подлежащего меньше объёма сказуемого, можно символически изобразить, как это представлено на рис. 10.

Но если в обще-утвердительных суждениях подлежащее и сказуемое будут понятиями равнозначащими, то символ их будет иной. Возьмём пример: «все квадраты суть параллелограммы с равными сторонами и равными углами». В целом суждении S и P суть понятия равнозначащие и, как таковые, совпадают друг с другом своими объёмами. Поэтому мы не можем круг поместить в середине P, как это мы сделали в предыдущем суждении, а должны представить отношение S к P в виде двух совпадающих кругов (рис. 11).

Суждения E. Возьмём обще-отрицательное суждение «ни одно насекомое не есть позвоночное». В этом суждении мы отрицаем всякое совпадение между подлежащим и сказуемым; один класс находится вне другого класса. Мы в мышлении совершенно отделяем класс подлежащего от класса сказуемого. Символически отношение S к P в таких суждениях может быть обозначено посредством двух отдельно стоящих и не связанных друг с другом кругов (рис. 12).

Суждения I. Возьмём частно-утвердительное суждение «некоторые книги полезны». В этом суждении часть класса S входит в объём класса P, т.е. совпадает с классом P. Если какая-нибудь часть S совпадает с P, то круги S и P должны иметь общую часть, т.е. должны пересекаться. Символически отношение между подлежащим и сказуемым в частно-утвердительных суждениях можно изобразить так, как это сделано на рис. 13.

Та часть S, о которой утверждается в P, на рисунке заштрихована.

Некоторые частно-утвердительные суждения можно символизировать иначе. Возьмём пример: «некоторые животные суть позвоночные». Если мы станем рассматривать объём понятий «животные» и «позвоночные», то увидим, что последнее понятие подчинено первому, т.е. в объём понятия «животные» входит как часть понятие «позвоночные». Поэтому символ такого частно-утвердительного суждения будет таков, как он изображён на рис. 14.

Он показывает, что мы из S (животные) выделяем часть, которая и есть P (позвоночные). Та часть S, о которой идёт речь, на рисунке заштрихована.

Суждения O. Возьмём частно-отрицательное суждение «некоторые книги не суть полезны». Это суждение означает, что некоторые книги не входят в класс полезных вещей, другими словами, некоторая часть S не входит в объём P. Если мы представим подлежащее и сказуемое в суждении O в виде кругов (рис. 15), то эти круги должны иметь и общие и не общие части, т.е. они должны пересекаться.

Заштрихованная часть круга означает, что об этой части субъекта идёт речь в этом суждении, а именно, что она не входит в объём понятия P, что она находится вне понятия P. Таким образом, для суждения O мы получаем тот же символ, что и для класса суждений I. Разница между их символами та, что в суждениях I мы обращаем внимание на то, что есть совпадающего между S и P, а в суждениях O – на то, что есть не совпадающего между, ними.

К некоторым суждениям класса O применим другой символ. Возьмём, например, суждение «некоторые змеи не имеют ядовитых зубов». Здесь опять понятие сказуемого подчинено понятию подлежащего. Так как «змеи, имеющие ядовитые зубы» (P), составляют только часть класса змей, то P входит как часть в объём понятия S (рис. 16).

В суждении «некоторые змеи не имеют ядовитых зубов» мы из объёма S выделяем часть, которая ограничивается кругом P. Эта часть S, которая находится в круге P, обозначает тех змей, которые имеют ядовитые зубы. Та часть, которая находится вне круга P, будет обозначать змей, которые не имеют ядовитых зубов. Если мы заштрихуем ту часть круга S, которая находится вне P, то мы покажем, о какой части всего класса идёт речь.

Объёмы подлежащего и сказуемого. Теперь нам следует рассмотреть суждения с точки зрения объёма их подлежащих и сказуемых. Если мы будем рассматривать суждения с этой точки зрения, то увидим, что в некоторых суждениях мы берём подлежащее или сказуемое во всём объёме, а в других – не во всём. Если подлежащее и сказуемое берутся в суждениях во всём объёме, то говорят, что они распределены; если они взяты не во всём объёме, то говорят, что они не распределены.

В суждениях A подлежащее распределено, потому что в них предикат утверждается относительно всех представителей того или другого класса, но сказуемое не распределено, что легко можно видеть из вышеприведённого примера: «все рыбы суть позвоночные». В этом примере мы приписываем известное свойство, в данном случае принадлежность к известному классу, всем рыбам; что же касается позвоночных, то мы приобретаем знание только о некоторой части их, но не обо всех. Суждение A поэтому распределяет своё подлежащее, но не распределяет своего сказуемого.

Но в тех суждениях A, в которых подлежащее и сказуемое суть понятия равнозначащие, сказуемое взято во всём объёме. Например в суждении «все амальгамы суть ртутные сплавы».

В суждениях E и подлежащее, и сказуемое распределены. Если мы возьмём суждение «ни одно насекомое не есть позвоночное», то в этом суждении мы утверждаем нечто как обо всех насекомых, что они не суть позвоночные, так и обо всех позвоночных, что они не суть насекомые. Из этого суждения мы узнаём, что ни один из предметов, находящихся в сказуемом, не может быть найден между предметами, находящимися в подлежащем. Таким образом, обще-отрицательное суждение распределяет как подлежащее, так и сказуемое, потому что мы из него узнаём нечто как обо всём классе подлежащего, так и обо всём классе сказуемого.

В суждении I ни подлежащее, ни сказуемое не распределены.

Если мы возьмём пример: «некоторые книги полезны», то мы из него не вынесем никакого знания ни обо всём классе «книг», ни обо всём классе «полезных вещей». Из этого суждения мы только узнаем о некоторых книгах, что они полезны, но мы не узнаем, что входит во весь объём полезных вещей, т.е. мы не узнаем, какие вещи полезны. Другими словами, из данного суждения мы ничего не узнаем обо всём классе «полезных вещей». Мы об этом знаем из других источников, а не из данного суждения. Если же мы не узнаем ничего определённого относительно всего объёма сказуемого частно-утвердительного суждения, то это значит, что эти суждения не распределяют своего сказуемого.

В суждении O подлежащее не распределено, ибо когда мы говорим, что «некоторые животные не суть позвоночные», то мы берём подлежащее не во всём объёме, мы говорим о некоторых, а не обо всех животных. Сказуемое в суждении O распределено, так как мы S исключаем из всего объёма сказуемого. Исключить вещь из какого-нибудь пространства, например из дома, значит удалить её не из какой-нибудь части, но из всякой части, из всего пространства, из всего дома. Хотя часть животных входит в класс позвоночных, однако остальная часть исключается и притом из всех частей сказуемого.

На рис. 17 распределённость подлежащего и сказуемого обозначается при помощи более широких линий:

A: S распределено, P не распределено

E: S распределено, P распределено

I: S не распределено, P не распределено

O: S не распределено, P распределено

Случаи, когда субъект распределён или не распределён, нетрудно распознать, потому что на это указывают слова «все», «некоторые», «ни один» и т.п. Что же касается предиката, то вышеприведённая схема показывает, что отрицательные суждения распределяют, а утвердительные не распределяют своего предиката.

Вопросы для повторения

Изобразите символически отношение между подлежащим и сказуемым в суждениях A, E, I, O. Когда говорится о подлежащем или сказуемом, что оно распределено? Какой признак для различения распределённости или нераспределённости? Рассмотрите суждения A, E, I, O с точки зрения распределённости их подлежащих и сказуемых.

Источник: Учебник логики (для гимназий и самообразования). — 2-е изд. — Киев ; Одесса: И.А. Розов, 1906 (Киев). — [2], IV, II, 177 с.

Поделиться ссылкой на выделенное

Нажмите правой клавишей мыши и выберите «Копировать ссылку»